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LETTER TO THE EDITOR 

Non-commutative analysis, quantum group gauge 
transformations and gauge fields 
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Department of Physics, Liaoning Normal University, Dalian 116022, Liaoning, 
People’s Republic of China 

Received 10 December 1992, in final form 2 February 1993 

Abstract. In this letter a non-commutative analytic method is given, we discuss what is a 
q-sequence, a q-analytic function, a q-derivative, a q-differential equation and its solution, 
etc. respectively. By using these terms the vector fields and the local quanNm group GLg(2) 
gauge transformation on a quantum plane can be described. From the covariance require- 
ment underthegauge transformations weobtain the 9-covariantderivativesand the GLp(2) 
gauge field which is a quantum analogue of the GL(2) gauge field. The solutions of the 
GLJZ) gauge field equation are discussed, and the explicit form of the null gauge field 
solution is given. 

In the quantum group theory, it is an interesting open problem to ask if there is a 
quantum analogue of gauge field theory [I]. In this respect there have been some 
approaches, e.g. [2-41. However there are still some difficulties. It seems to us the crux 
of the problem is that even though the algebraic generators are called ‘coordinates’, 
the quantum groups are, in fact, pure algebraic structures, and the quantum differential 
calculus on a quantum hyperplane is a covariant algebraic system under the Linear 
transformations of the quantum hyperplane where there are no movable coordinates, 
as the real or complex coordinates, as in the classical analysis, etc. Therefore, as yet 
we are short of a concept of ‘localization’, unless other real or complex coordinates 
are introduced into the coefficients of algebraic elements 12-41, however they already 
are not the coordinates of the quantum hyperplane, and will lead to other difficulties. 
Therefore it is hard to consider the ‘fields’, the ‘local gauge symmetry’ and the ‘field 
equations’, etc, on a quantum hyperplane. We deem that the key to construct a quantum 
group gauge theory is just to surmonnt the above difficulties, and a gauge field theory 
describing non-commutative fields can be given. In this letter we suggest just such a 
theory. 

The letter is organized as follows. Firstly we discuss a non-commutative analytic 
method which is already different from the original non-commutative geometry [l], 
each generator, indeed, plays a role as a movable coordinate as in analysis. Next, by 
the terms of non-commutative analysis we can discuss the vector fields on a quantum 
plane, the local gauge transfonnations, the local Lie algebra, etc. From the gauge 
symmetry requirement the q-covariant derivatives and the quantum group gauge fields 
are given. In the last case, a simple case, i.e. the ‘pure gauge, or flat’ solution is given. 

For the sake of simplicity and clarity, in this letter the deformation parameter q 
takes only the real number values, and we only discuss the case of the two-dimensional 
quantum group GL,(2). However all results concemed can be extended to the case 
of the complex multiparameter and higher-dimensional quantum groups. 
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What is a q-sequence? A q-sequence S4 is defined as a finite or inlinite countable 
set S" ={so, sl,. .., s,, . . .}, where s , ( a = O ,  1, .. .) are form elements. Among the 
elements of S" there are the additions, +ss and the multiplication s&, its associative, 
however, is not commutative in general. By the generators sa's an infinite algebraic 
system 9" on the real field R' is generated. Of course, the multiplication of two 
elements in P, generally, is also non-commutative. We require that the commutation 
relation must depend on the parameter q, and when q-+ 1 the multiplication must 
change into commutative. Since the multiplication of S4 changes into commutative as 
q+ 1, we can agree that now this S" will be identified with some real number set 
A={Ao, A , ,  A 2 , .  . . , A,, . . .}, and we read it in S4 -+A as q +  1. In this letter we find 
that to determine a quantum group gauge field structure, in fact, is to determine the 
concrete structure of some q-sequence S' and its limit A as q +  1. 

According to the symbols of Manin [I], the quantum plane A T  is an associative 
algebra, its generators are x and y,  

xy = qyx. (1) 

The quantum plane A:12 is generated by 5 and q, 

A matrix 

means that the following commutation relations hold, 

ab = qba 

bc = cb 

cd = qdc 

ac = qca 

bd = qdb 

ad -da = ( q  - q-')bc 

(4) 

where a, b, c and d commute with x, y,  5 and q. Therefore To represents a linear 
transformation of Ai" and At", 

Now, we consider what is a q-analytic function on At". Suppose that f({,, c2) is 
and t2 in common meaning. Therefore f 

f =  Aapxays AmB E R' is constant. ( 6 )  

Here, and in the following, we use the Einstein summation convention, i.e. the repeated 
Greek indices are summed over the values 0, 1,2, . . . ; and the repeated Latin indices 
are summed over the values 1,2. Let S" be the q-sequence Sq = { q y ;  seB} (a, p = 
0, 1,2, .  . . ; x, Y E  A?) where s+'s obey the following commutation relations 

a real analytic function of real variables 
can be developed into a power series 

SapX = xs+ &BY = Ys.0 . (7) q - P ~ s  - -d 
aB v 8 - 4  s+sw3 
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We consider the element f "x, y )  in g', 
f'(s v) = s,,x-Yp. (8) 

According to the above arrangement, S' must change into a real number set as q + 1. 
If this set is just the set A={Aap}, i.e. s , ~ + A ~ ~ ,  then it is called a q-analytic function 
on the quantum plane A:", or a q deformation of the real analytic function f, and we 
read fq +f as q+ 1. As for the meaning of the commutation relations (7), it is to 
guarantee the consistency of the definition of 1: In fact, from the relation 

( 9 )  Y 

(s@X=Y%?8x~Y6) =f"f' = (s,,x'Y"(s,px"Ya). (10) 

x a y P . x ~ y 6  = q - P ~ x = + ~  0+6 

we have 

In the following, to determine a q-analytic function f' means that some concrete 
algebraic structures of S4 are given unless (7) and the limit, real analytic function f, 
are fixed. At present, temporarily, we don't discuss the function f'(& 7). It, in fact, 
has only four non-zero terms: f'(5, ~ ) = s o o + s l o ~ + s o l ~ + s l , ~ ~ ,  and has no real limit 
as q + 1. In the following discussion, each q-analytic function f9 is just f 4 ( x ,  y ) ,  and 
sometimes it is simply written as f: Notice that a real analytic function f can have the 
distinct q deformations, since in a S' there may be some distinct additional algebraic 
structures. 

Similar to [5-71, the q-derivatives of a q-analytic function f can be defined as 

Therefore 

where the q-integer [o]=(q2"-1)/(q2-1). When q +  1, then a, and J, change into 
the ordinary partial derivatives. On the quantum plane Ai" there is the invariant 
differential structure [5-71 as follows. Let E = dx, 7 = dy and d = dx J, f d y  d,, then 
there are the following relations 

d(fg) = ( d f ) g + f d g  d 2 = 0  

xy = qYx x d x =  q2 dxx x dy = (q2-  1) dx y + q dy x (13) 

y dx = q dx y Ydy=q2dyy. 
In the following we simply write x1 = x, x2 = y,  a, = 3, and J, =a,. For d the Lebnitz 
rule is [5] 

JiCfg)= (a;f)g+ (o!f)d& i=1 ,2  (14) 
where 0: is the operator left translating dx', which is linear [5], 

Ozr are real numbers (see equation (13)) and the repeated Latin indices are summed 
over 1,2, when q-1, then 0:,-,8;i$, and dx' commute withf: 
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In the above, it is pointed out that in the ordinary quantum group theory, we, 
generally, do not discuss the problem conceming to the 'non-commutative' differential 
equations and their solutions. However, in the present non-commutative analysis there 
is the problem of how to find the solutions of a q-differential equation. For example, 
to find a q-analytic solution f' of q-differential equation 

(16) P(fq, J f 9 ,  a,$', . . .) = O  
means that the following two steps are completed: 

(i) We can substitutefq = s,,x"y@ and J,f9 = q 2 p [ a ] s , p x Q ~ ' y s ,  etc. into (16), and 
put the results in order. Let the coefficient of each monomial x"yB (a, p =0,1,2,. . .) 
be equal to zero, then some algebraic relations among S,~'S are obtained. This means 
that the q-differential equation (la), in fact, is an algebraic requirement adding on the 
q-sequence S9 = {s,~}. 

(ii) when q - f  1 (16) changes into an ordinary partial differential equation. Suppose 
that there is a real analytic solution f= AmpxmyB, therefore let the h i t  of S4 be the 
real number set A={A,@} as q + l .  Of course, here we already suppose that the 
corresponding real analytic solution, indeed, exists; conversely, if there is not any real 
analytic solution, then the above non-commutative analytic method loses efficacy. 

As an example, we consider the q-differential equation 

(J , f4) '+(f9)2-1=0.  (17) 
According to (i), we can obtain a q-analytic solution fq = s,,xny@, where in the 
q-sequence Sq={s.,], besides the commutation relations given by (7), there is the 
following algebraic relation 

[al[rls$u@- q-B'seBsyE =O. (18) 
. + y = M  

@ + S = N  @+SSN 

c q2N-b'"-1) 
o + y = M + Z  

As for the limit f, for instance, we can take 
ca (-1)mx2n-B+1 B 

,@=o p!(Za-p+l)! '  
Y f=sin(x+y)= 

Therefore, when q + 1, 

3-0 + = 
[;I I ) ~  [(2r + p + 1) ! p !I- w h e n a + p = 2 r - 1  

when a + p  22r- 1 (19) 
(r = o,1,2, . . .). 

q-@'x,,x, = q-=8xIBxaB 
q-Bvx y - 1-*6y x 

Now we enter into the discussion about quantum group gauge fields. Let S: = 
and S', = { Yep} be two q-sequences, among which the commutation relations are 

q-@'Y.,Y, = q-"8Y,Y,, 
(20) 

-0 e-  18 m.0 

(no summing for the repeated indices). Therefore the q-analytic functions X(x, y) = 
X,,xayyp and Y(x, y) = Ympxmy@ obey the commutation relation 

this means that a quantum plane Ai" is constructed again by X and Y. However, it 
is different from the ordinary non-commutative geometry [I]  where the higher terms 
of x and y have to appear in X and Y. Here x and y are more like the movable 

X Y = q I X  (21) 
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coordinates of a two-dimensional analytic surface in mathematics. Thus the mapping 
(x, y) + (X, Y) can be explained as a 'nonlinear transformation' of the quantum plane 
Ai". Next we consider the q-sequence S$ = { rep} as follows: 

the commutation relations are 

4-"%,9BYs = q'-myBy&ep 

q-"B+Cr6 = q-"'C,Bep =@ YS 
q-P~c D = q 1 - m 6  

q-"A,pD, -q-*'D,&,p = ( q  -q-l)q-ByB,pC+ 

q-py&pC, = q'-"C v6 A =D 

q - P ~ ~  D =q1-"6 

(23) 
D,B@ 

DrsC=a 

q - f l Y m p @ @  = q-=Q+veo 
'P = A, B, C, D 

a0 76 

and 

(24) 

where in (U) and (24) the repeated indices are not summed. Let A = A(& y )  =A,,x"yP, 
and B = B(x, y )  = Bepx"yp, etc, then it is easily seen that the q-analytic functions A, 
B, C and D obey the same commutation relations as in (4), and (A, B, C, D )  pairwise 
commute with (X, Y ) .  This means that with respect to X and Y we have 

@ = X ,  Y 

However, it is different from the ordinary quantum group theory where the coordinates 
x and y are contained in T. Therefore T(x,  y )  is a locally linear transformation of the 
quantum plane A T .  In addition, it is easily verified that the 'constant part' of T is 
just an ordinary To as in (3). 

To=(:: Do0 " ' ) E  GL.,(2). 

In a gauge field the Lie algebras will be used. However the ordinary quantum 
groups are 'constant', their Lie algebras, as in the results of [SI, are also 'constant'. 
Therefore, in the first place, the Lie algebras of the quantum group must be 'localized'. 
Let SS={(EJap} ( i = l , 2  and a,P =0,1,2, .. .) be a matrix q-sequence, where each 
(Ej).p is a matrix 
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and again (A, C)+(B,  D )  gives the remaining relations. In addition, there are the 
following commutation relations in E, 

q-p'oj(o!),,. (&)* +q-""j(o:)*. (U:),,# =o 
q-~ 'o ; (w: ) . , # . (w; ) *+  q2-"8o;(or),. (o;).@ =o 
q-~'o:(o:),,.(o:)*+q*2-a*o:(o:)*.(o;).,# =o 
q-e'o:(oi).a. (w:)* + q--aO;(of)*. (o;),,# =o. 

(29) 

In fact, the above relations in (28) and (29) guarantee that just the following localized 
commutation relations hold: 

R'rP+i-" = 0 RfR-+q2R-R+ = 0 

R"fl'+q*2RlR* = o  R'R2+R2R'=O (30) 

where Cl+ = dx w f +  dy o$, o? = (o$),&~, (+ = 1,2, +, - and i = 1, 2), and 

An'  = q2R'A AR2 = R2A 

CR2 = R2C. 
1 

4 
CRI => 0' c 

The remaining relations are given by (A, C ) +  (B ,  D) again. Equations (30) and (31) 
mean that the matrix 

R' a+ I  

E = dx' E, = dx'( :' 2) = (R- 

belongs to the Lie algebra of GLq(2) [ 8 ] .  However, since of contains the coordinates 
x and y, E,(x,  y )  is localized. If = O  for CY, p * 1, then they retum to the results 
in [SI. 

Now according to (21) and (24), the q-analytic function pair V = V(x, y )  = ( X ( x ,  y), 
Y(x, y ) )  can be explained as a q-vector field on the quantum plane AT, and T(x,  y) 
represents a local GL&) gauge transformation 

V-b 7= Tv. (33) 
In this letter we want to construct a q deformation field theory with this local gauge 
symmetry. For this purpose, we define the q-covariant differential calculus 9 by 

9 = d + E  (34) 
where E is the Lie algebra of quantum group GLJ2) described as in (27)-(32). The 
covariance means the requirement 

&W)= T ( 9 V )  i.e. ( d +  E)( 77') = T ( d +  E )  V. (35) 

E + I? = TET-' -(dT)T-'. (36) 
where E = dx' E', E, ( i  = 1,2) is a q-analytic function matrix as in (32), it is the GL,(2) 
gauge field (or gauge potential). Therefore we can write 

From this we obtain that the gauge transformation of E is 

9 = d x ' V i  v j  =ai  + E,. (37) 
V, can be called the q-covariant derivative. However, the meaning of the covariance is 

ei( Tv) = (OfT)V,V (38) 
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where 0: is the left translation operator defined by (15). Therefore the gauge transfor- 
mation of V is 

v ,+  e , ( o : T ) v * T - ' .  (39) 
As for the gauge field intensity Fc,, we find that it may be constructed as follows. 

In the h s t  place, let 93; be the operator right translating dx', which is dehed  by 

dxiVk=(93mVt) dx" (40) 

93mV,=93,(d,+E')=P,a*+Q,E* (41) 

and 

where QL is the operator right translating dx' through a q-analytic function by using 
(13), and Pi is the operator right translating dx' through a, of which the concrete 
expressions are given in [ 5 ] .  Obviously, Q = 0-' and we have 

d x y = ( Q ; f )  dx' 

where QC, are real numbers which are determined by (13), and 1 is the identity operator. 
By using the above symbols, the GLq(2) gauge field intensity K j  is defined as 

6, =J,(Q:Ek)-a,(Q:E*)+IEj, E,], (43) 

[E , ,  4iQ = E A Q : E ~ - E , ( Q : E ~ ) .  (44) 

where [ , l a  is a deformation Lie bracket 

F,, is an anti-symmetric, Fcj = -4', it has only one essential component, i.e. FI2 or 
F21. By using (40)-(44) and a direct calculation, it can be proved that the gauge 
transformation of is 

Fjj + f i j  = ( OfT)Fkm(QY T I ) .  (45) 

f i j  = v ~ ( Q : E ~ ) - v ~ ( Q : E ~  (46) 

then the correctness of (45) is easily seen from (36), (39) and (42). Since Q : - + S : . l  
as q +  1, F;, changes into the ordinary gauge field intensity as q +  1. 

f l J  describes a non-commutative quantum deformation field. Now, we consider the 
source-free field equation and its solutions. Equations 

However, the simplest way is that F,, can be written as 

V<Ej = 0 j = l , 2  (47) 

 IFF E I F D  d2F12= E2Fu. (48) 

in fact, contain only two non-zero equations, i.e. 

In order to obtain the solutions we, in the first place, must calculate the concrete results 
of the operator Q. From (13) and Ej = (EJopx"ye, we have 

dx E, = (Ei).pq-2"-pxaya dx 

dy E, = (Ei),s[q'-""-p(l - qZe)x"-'yp+' dx+ q-"-ZBx"ya dy] 
(49) 
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therefore 
&E, = (E,),q-*"-Px-y@ + (E*),@q-=-P (1  - 4 z a ) x = - l y ~ + ~  

-a-20 D B (50) 

We substitute (50) into (43), (44) and (48), and after through a careful calculation we 
can obtain the concrete algebraic relations in the q-sequence S4 = { ( E j ) * @ } ,  however 
they are more lengthy in form. As an example, here we write explicitly its null gauge 
field solution as follows. From the null field 

Q : E k = ( E z ) , q  x Y . 

F12 = 0 

i.e. 
q-"[.I(Ez)eaX'-rY P -  9 -2a-P [Pl(El).Px"r~-' 

"ti B t 6  
- q l - 3 a - 8 ( 1  - q 2 a ) [ p  + I I ( E ~ ) ~ ~ ~ ~ - ~ ~ P  + q - m - 2 ~ - ~ ~  (.El).& 

-q -2Y-6 -PY (E2),S(El),Sx Y 

Y 
n C y  P+S 

+ q l - 3 y - 8 r + P 6 ( l _ q 2 Y ) ( ~ 2 )  .I@ ( E )  I ys x*+?'-l Y @ + S - l , o  ( 5 1 )  
we obtain the algebraic relation in S9 

=q-1-2MM-N [ N +  lI(EI)M,N+.I 

- ( q - ~ - ~ [ ~ +  1 1 + ~ - 2 - 3 ~ - ~  ( 1  - q 2 ( M + " ) [ N +  ~ ] ) ( E ~ ) M + I . N  ( 5 2 )  
where the integers M, N = 0,1,2,. . . . As for the limit as q + 1, we only need to take 
m? ( i  = 1 , 2  and 4 = 1 , 2 ,  +, -) as the ordinary real functions, and to seek a real analytic 
solution A, = [A?] of the following common first-order partial differential equation 
(such A, exists) 

Therefore we make E,+& or m ? + A f  as q + l .  
In summary, in order to describe some nonlinear and non-commutative fields, a 

quantum group gauge field theory is necessary and possible. In this letter the above 
discussion is just such a scheme. In addition, by use of the Yang-Baxter matrix terms 
the above results can be extended to the case of complex multiparameter and higher- 
dimensional quantum group; also to the direct product quantum groups [9], etc. These 
and some possible applications will be discussed by us elsewhere. 
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